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Abstract   
 
The radiation of plane sound waves from two opposed semi-infinite cylindrical duct with overlapping 

edges is investigated in the case the walls of the ducts lying in overlap region lined with different 

acoustically absorbent materials. By using the series expansion in overlap region and using Fourier 

transform technique elsewhere we obtain two uncoupled Wiener-Hopf equations their solutions 

involve unknown expansion coefficients satisfying a system of linear algebraic equations. Solving the 

algebraic system numerically by truncating the infinite series, the effect of the absorbent lining on the 

radiated field are presented graphically. 
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1. Introduction  

 

Propagation of waves in cylindrical ducts has frequently been an encountered topic for 

researchers when studying several engineering applications. Such as propagation of 

electromagnetic waves in coaxial cables and sound propagation in exhaust silencers.  Due to 

sudden area changes in cross sectional area of the waveguide in such applications internal 

reflections occur and the energy in the transmitted wave decreases. Having such a geometry, 

simple expansion chambers have been shown to reduce the noise in car exhaust systems and 

widely investigated in literature [1], [2], [3], [4]. But, if there is a hole “outwards energy 

radiation” on the waveguide it will be very difficult to analyse the transmission properties of such 

an exhaust system. This problem was in depth examined in [5] with hard walled cylindrical ducts. 

In this paper, the radiation of sound waves from two opposed semi-infinite cylindrical ducts 

whose walls in finite overlap region are treated by different absorbent linings is investigated. So 

the objective of this paper is to analyse the radiation from the gap between two ducts and to 

reveal the influence of the partial lining on the radiated field. The difference from [5] is the 

partial lining in overlap region. This change in one hand has an importance in the application, on 

the other hand makes the problem very difficult (even impossible) to apply the same method used 

in [5]. To overcome this difficulty a hybrid method of formulation that employed previously in 

[6] is adopted in this paper. Expanding the field in the overlap region into a series of 

eigenfunctions and using the Fourier transform technique elsewhere the problem is reduced to 

two uncoupled Wiener-Hopf equations. Their solutions involve infinitely many unknown 

expansion coefficients satisfying a system of linear algebraic equations. Solving the algebraic 

system numerically the effect of the lining on the radiated field are presented graphically. 

The time dependence is assumed to be exp(-it) with  being the angular frequency and 

suppressed throughout this paper.  
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2. Materials and Method 

 

Consider two opposite semi-infinite circular cylindrical waveguides of different radii with 

common longitudinal axis, say z, in a cylindrical polar coordinate system (ρ, ,z). While inner 

duct occupies the region ρ = a; z < l and the outer duct occupies the region ρ = b > a; z > 0, where 

l represents the overlap length. The parts of the surfaces of the inner and outer ducts ρ = a+0 and 

ρ = b - 0 lying in the overlap region 0 < z < l are assumed to be treated by acoustically absorbing 

linings respectively. They are characterized by constant but different surface impedances 𝑍1 =
1

𝜂1
, 𝑍2 =

1

𝜂2
 and the remaining parts of the ducts are perfectly rigid (see Fig. 1). The ducts are 

immersed in an inviscid and compressible stationary fluid of density ρ0 and sound speed c. A 

plane sound wave is incident from the positive z-direction, through the inner duct of radius ρ = a. 

From the symmetry of the geometry of the problem and the incident field the scattering field 

everywhere will be independent of the  coordinate. We shall therefore introduce a scalar 

potential u(ρ,z) which defines the acoustic pressure and velocity by p = iρ0u and v = grad u, 

respectively. 

 
Figure 1. Geometry of the problem 

 

Let the incident field be given by 

 

𝑢𝑖(𝜌, 𝑧) = 𝑒𝑖𝑘𝑧                                                                              (1)                                                                                                                               
 

where 𝑘 = 𝜔/𝑐 denotes the wave number. For the sake of analytical convenience we will assume 

that the surrounding medium is slightly lossy and k has a small positive imaginary part. The 

lossless case can be obtained by letting  Im(𝑘) → 0 at the end of the analysis. 

 

It is convenient to write the total field in different regions as: 

 

𝑢𝑇(𝑟, 𝑧) =     

{
 
 

 
 
𝑢1(𝜌, 𝑧)                                                                                         ,          𝜌 > 𝑏, 𝑧 ∈ (−∞,∞)

𝑢2
(1)(𝜌, 𝑧)𝐻(−𝑧) +                                                                                                                    

          𝑢2
(2)(𝜌, 𝑧) [𝐻(𝑧) − 𝐻(𝑧 − 𝑙)] + 𝑢2

(3)(𝜌, 𝑧)𝐻(𝑧 − 𝑙), 𝑎 < 𝜌 < 𝑏, 𝑧 ∈ (−∞,∞)

𝑢3(𝜌, 𝑧) + 𝑢
𝑖(𝜌, 𝑧)                                                                    ,          𝜌 < 𝑎, 𝑧 ∈ (−∞,∞)

       (2)         

 

where 𝐻(𝑧) is the unit step function. 
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2.1. Fourier transformation/Wiener-Hopf equations  

 

The unknown scattered fields 𝑢1(𝜌, 𝑧) and 𝑢2
(1)
(𝜌, 𝑧) satisfy the Helmholtz equation for the 

regions 𝜌 > 𝑏,−∞ < 𝑧 < ∞ and 𝑎 < 𝜌 < 𝑏,−∞ < 𝑧 < 0, respectively 

 

[
1

𝜌

∂

∂ρ
(𝜌

∂

∂ρ
) +

∂2

∂z2
+ 𝑘2]

𝑢1(𝜌, 𝑧)

𝑢2
(1)
(𝜌, 𝑧)

= 0                                                (3)                                                                                           

 

and are to be determined by the following boundary and continuity relations: 

 
𝜕

𝜕𝜌
𝑢1(𝑏, 𝑧) = 0   ,          𝑧 > 0                                                        (4) 

𝜕

𝜕𝜌
𝑢2
(1)
(𝑎, 𝑧) = 0   ,          𝑧 < 0                                                        (5) 

𝜕

𝜕𝜌
𝑢1(𝑏, 𝑧) =

𝜕

𝜕𝜌
𝑢2
(1)
(𝑏, 𝑧)   ,          𝑧 < 0                                   (6) 

𝑢1(𝑏, 𝑧) = 𝑢2
(1)
(𝑏, 𝑧)         ,           𝑧 > 𝑙                                   (7) 

Applying Fourier transform to the above mixed boundary value problem and making necessary 

arrangements, we first achieve an equation for 𝐹(𝜌, 𝛼) being the Fourier transform of  𝑢1(𝜌, 𝑧), as  

𝐹(𝜌, 𝛼) = −�̇�−(𝑏, 𝛼)
𝐻0
(1)
(𝐾𝜌)

𝐾(𝛼)𝐻1
(1)
(𝐾𝑏)

                                        (8) 

with                                𝐹(𝜌, 𝛼) = ∫ 𝑢1(𝜌, 𝑧)𝑒
𝑖𝛼𝑧𝑑𝑧

∞

−∞
= 𝑒𝑖𝛼𝑙[𝐹+(𝜌, 𝛼) + 𝐹−(𝜌, 𝛼)]                                  (9) 

and then we obtain the first decoupled Wiener-Hopf equation valid in the strip 𝐼𝑚(−𝑘) <

𝐼𝑚(𝛼) < 𝐼𝑚(𝑘),  where 𝛼 is the complex Fourier transform variable. 

𝑏

2
𝐹+(𝑏, 𝛼) − �̇�−(𝑏, 𝛼)

𝐿(𝛼)

𝐾2(𝛼)
= −

𝑏

𝜋𝑎

(𝑖𝛼𝑓0 − 𝑔0)

𝐾2(𝛼)
+
1

𝜋
∑

𝐽1(𝐾𝑚𝑎)

𝐽1(𝐾𝑚𝑏)

(𝑖𝛼𝑓𝑚 − 𝑔𝑚)

𝛼𝑚
2 − 𝛼2

∞

𝑚=1

              (10) 

here 𝐿(𝛼) is kernel function defined and factorized by 

𝐿(𝛼) =
𝐻1
(1)
(𝐾𝑎)

𝜋[𝐽1(𝐾𝑎)𝑌1(𝐾𝑏) − 𝐽1(𝐾𝑏)𝑌1(𝐾𝑎)]𝐻1
(1)(𝐾𝑏)

= 𝐿+(𝛼)𝐿−(𝛼)                       (11) 

explicit form of split functions 𝐿±(𝛼) are given in [7] and 𝐾(𝛼) is square root function defined as 

𝐾(𝛼) = √𝑘2 − 𝛼2                       ,                                             (12) 
The functions 𝐹± are half-plane analytical functions described by Fourier integrals as:   

𝐹±(𝜌, 𝛼) = ±∫ 𝑢1(𝜌, 𝑧)𝑒
𝑖𝛼𝑧𝑑𝑧

±∞

0

                                                     (13) 
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where  ∙  denotes the derivative with respect to ρ. 

Owing to the analytical properties of 𝐹±, 𝐿± and following classical procedures of Wiener-Hopf 

technique we get the solution of equation in (10) of the form: 

 

�̇�−(𝑏, 𝛼)𝐿−(𝛼) =
𝑏

𝜋𝑎

(𝑖𝑘𝑓0 − 𝑔0)

𝐿+(𝑘)
−
(𝑘 − 𝛼)

𝜋
∑

𝐽1(𝐾𝑚𝑎)

𝐽1(𝐾𝑚𝑏)

(𝑘 + 𝛼𝑚)

𝐿+(𝛼𝑚)

(𝑖𝛼𝑚𝑓𝑚 − 𝑔𝑚)

2𝛼𝑚(𝛼𝑚 − 𝛼)

∞

𝑚=1

         (14) 

where 𝐾𝑚 = 𝐾(𝛼𝑚), (𝑚 = 1,2… ) are the zeros of the function 𝐾2(𝛼)[𝐽1(𝐾𝑎)𝑌1(𝐾𝑏) −

𝐽1(𝐾𝑏)𝑌1(𝐾𝑎)] on upper half of complex 𝛼-plane. 𝑓𝑚, 𝑔𝑚 are the expansion coefficients and 

satisfies a system of algebraic equations which will be given in the next sub-section.  

Similarly, the unknown scattered fields 𝑢3(𝜌, 𝑧) and 𝑢2
(3)
(𝜌, 𝑧) satisfy the Helmholtz equation for 

the regions 𝜌 < 𝑎,−∞ < 𝑧 < ∞ and 𝑎 < 𝜌 < 𝑏, 𝑙 < 𝑧 < ∞, respectively 

 

[
1

𝜌

∂

∂ρ
(𝜌

∂

∂ρ
) +

∂2

∂z2
+ 𝑘2]

𝑢3(𝜌, 𝑧)

𝑢2
(3)
(𝜌, 𝑧)

= 0                                                (15)                                                                                           

and are to be determined by the following boundary and continuity relations: 
𝜕

𝜕𝜌
𝑢3(𝑎, 𝑧) = 0   ,          𝑧 < 𝑙                                                        (16) 

𝜕

𝜕𝜌
𝑢2
(3)
(𝑏, 𝑧) = 0   ,          𝑧 > 𝑙                                                        (17) 

𝜕

𝜕𝜌
[𝑢3(𝑎, 𝑧) + 𝑢

𝑖(𝑎, 𝑧)] =
𝜕

𝜕𝜌
𝑢2
(3)(𝑎, 𝑧) ,   𝑧 > 𝑙                                            (18) 

𝑢3(𝑎, 𝑧) + 𝑢
𝑖(𝑎, 𝑧) = 𝑢2

(3)
(𝑎, 𝑧)  ,     𝑧 > 𝑙                                               (19) 

 

Taking Fourier transform of the Helmholtz equation (15) together with the relations (16-19) and 

making necessary arrangements we arrive at the second decoupled W-H equation to be solved, 

 

�̇�+(𝑎, 𝛼)
𝑁(𝛼)

𝐾2(𝛼)
+
𝑎

2
𝐻−(𝑎, 𝛼) = −

𝑎

𝜋𝑏

(𝑝0 − 𝑖𝛼𝑞0)

𝐾2(𝛼)
+
1

𝜋
∑

𝐽1(𝐾𝑚𝑏)

𝐽1(𝐾𝑚𝑎)

(𝑝𝑚 − 𝑖𝛼𝑞𝑚)

𝛼𝑚
2 − 𝛼2

∞

𝑚=1

−
𝑎

2

𝑒𝑖𝑘𝑙

𝑖(𝑘 + 𝛼)
       (20) 

where 𝐻±(𝜌, 𝛼) are half-plane analytical functions on complex -plane defined by Fourier 

integrals as: 

𝐻±(𝜌, 𝛼) = ±∫ 𝑢3(𝑟, 𝑧)𝑒
𝑖𝛼(𝑧−𝑙)𝑑𝑧

±∞

𝑙

                                                 (21) 

𝑁(𝛼) in (20) stands for the kernel function 

𝑁(𝛼) =
𝐽1(𝐾𝑏)

𝜋[𝐽1(𝐾𝑎)𝑌1(𝐾𝑏) − 𝐽1(𝐾𝑏)𝑌1(𝐾𝑎)]𝐽1(𝐾𝑎)
                                   (22) 

and will be factorized as 

𝑁(𝛼) = 𝑁+(𝛼)𝑁−(𝛼)           ,                                                (23) 
and their explicit expressions can be found in [8].  

Applying standard factorization and decomposition procedures to the equation (20) together with 

Liouville’s theorem we get the W-H solution of the form: 
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�̇�+(𝑎, 𝛼)
𝑁+(𝛼)

(𝑘 + 𝛼)
= −

𝑎

𝜋𝑏

(𝑝0 + 𝑖𝑘𝑞0)

(𝑘 + 𝛼)𝑁+(𝑘)
 

+
1

𝜋
∑

𝐽1(𝐾𝑚𝑏)

𝐽1(𝐾𝑚𝑎)

(𝑘 + 𝛼𝑚)

𝑁+(𝛼𝑚)

(𝑝𝑚 + 𝑖𝛼𝑚𝑞𝑚)

2𝛼𝑚(𝛼𝑚 + 𝛼)

∞

𝑚=1

−
𝑘𝑎 𝑒𝑖𝑘𝑙

𝑖(𝑘 + 𝛼)𝑁+(𝑘)
  (24) 

where 𝑝𝑚, 𝑞𝑚’s are expansion coefficients and will be determined later. 

 

2.2. Series Expansion and Determination of Unknown Coefficients 

 

The unknown field 𝑢2
(2)(𝜌, 𝑧) satisfies Helmholtz equation in the region a < ρ < b, 0 < z < l  

[
1

𝜌

∂

∂ρ
(𝜌

∂

∂ρ
) +

∂2

∂z2
+ 𝑘2] 𝑢2

(2)
(𝜌, 𝑧) = 0                                                (25) 

together with the relations: 

[𝑖𝑘𝜂1 +
𝜕

𝜕𝜌
] 𝑢2

(2)(𝑎, 𝑧) = 0   , 0 < 𝑧 < 𝑙                                                (26) 

[𝑖𝑘𝜂2 −
𝜕

𝜕𝜌
] 𝑢2

(2)(𝑏, 𝑧) = 0   , 0 < 𝑧 < 𝑙                                                (27) 

𝜕

𝜕𝑧
𝑢2
(1)
(𝜌, 0) −

𝜕

𝜕𝑧
𝑢2
(2)(𝜌, 0) = 0   ,       𝑎 < 𝜌 < 𝑏                                                 (28) 

𝑢2
(1)(𝜌, 0) − 𝑢2

(2)(𝜌, 0) = 0   ,       𝑎 < 𝜌 < 𝑏                                                 (29) 

𝜕

𝜕𝑧
𝑢2
(3)
(𝜌, 𝑙) −

𝜕

𝜕𝑧
𝑢2
(2)(𝜌, 𝑙) = 0   ,       𝑎 < 𝜌 < 𝑏                                                 (30) 

𝑢2
(3)
(𝜌, 𝑙) − 𝑢2

(2)(𝜌, 𝑙) = 0   ,       𝑎 < 𝜌 < 𝑏                                                 (31) 

So it can be expressed in terms of the waveguide modes as 

𝑢2
(2)(𝜌, 𝑧) = ∑[𝑎𝑛𝑒

𝑖𝛽𝑛𝑧 + 𝑏𝑛𝑒
−𝑖𝛽𝑛𝑧][𝐽0(𝛾𝑛𝜌) − 𝑅𝑛𝑌0(𝛾𝑛𝜌)]

∞

𝑛=0

                         (32) 

with  

𝑅𝑛 =
𝑖𝑘𝜂1𝐽0(𝛾𝑛𝑎) − 𝛾𝑛𝐽1(𝛾𝑛𝑎)

𝑖𝑘𝜂1𝑌0(𝛾𝑛𝑎) − 𝛾𝑛𝑌1(𝛾𝑛𝑎)
=
𝑖𝑘𝜂2𝐽0(𝛾𝑛𝑏) + 𝛾𝑛𝐽1(𝛾𝑛𝑏)

𝑖𝑘𝜂2𝑌0(𝛾𝑛𝑏) + 𝛾𝑛𝑌1(𝛾𝑛𝑏)
                     (33) 

where 𝛾𝑛’s are the roots of the equation 
𝑖𝑘𝜂1𝐽0(𝛾𝑛𝑎) − 𝛾𝑛𝐽1(𝛾𝑛𝑎)

𝑖𝑘𝜂1𝑌0(𝛾𝑛𝑎) − 𝛾𝑛𝑌1(𝛾𝑛𝑎)
−
𝑖𝑘𝜂2𝐽0(𝛾𝑛𝑏) + 𝛾𝑛𝐽1(𝛾𝑛𝑏)

𝑖𝑘𝜂2𝑌0(𝛾𝑛𝑏) + 𝛾𝑛𝑌1(𝛾𝑛𝑏)
= 0                     (34) 

while 𝛽𝑛’s are defined as 

𝛽𝑛 = √𝑘2 − 𝛾𝑛2  ,    𝑛 = 1,2, …                                               (35) 
 

Taking into account continuity relations (28-31) together with the expression (32) and W-H 

solutions (14), (24); we obtain a set of linear algebraic equations in terms of the unknown 

coefficients 𝑎𝑛, 𝑏𝑛 which are related with 𝑓𝑚, 𝑔𝑚, 𝑝𝑚, 𝑞𝑚.    
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𝑎𝜋2

2𝑏
𝐿+(𝑘)∑[𝑎𝑛(𝑘 + 𝛽𝑛) + 𝑏𝑛(𝑘 − 𝛽𝑛)]∆0𝑛=

∞

𝑛=0

 

+
𝑏

𝑎𝐿+(𝑘)𝑆0
∑[𝑎𝑛(𝑘 − 𝛽𝑛) + 𝑏𝑛(𝑘 + 𝛽𝑛)]∆0𝑛                                                 

∞

𝑛=0

 

−𝑘∑ ∑[𝑎𝑛(𝛼𝑚 − 𝛽𝑛) + 𝑏𝑛(𝛼𝑚 + 𝛽𝑛)]
∆𝑚𝑛

𝛼𝑚𝐿+(𝛼𝑚)𝑆𝑚

𝐽1(𝐾𝑚𝑎)

𝐽1(𝐾𝑚𝑏)

∞

𝑚=1

∞

𝑛=0

        (36) 

 

𝜋2

2
𝐿+(𝛼𝑟)

𝐽1(𝐾𝑟𝑏)

𝐽1(𝐾𝑟𝑎)
∑[𝑎𝑛(𝛼𝑟 + 𝛽𝑛) + 𝑏𝑛(𝛼𝑟 − 𝛽𝑛)]∆𝑟𝑛=

∞

𝑛=0

 

+
𝑏

𝑎𝐿+(𝑘)𝑆0
∑[𝑎𝑛(𝑘 − 𝛽𝑛) + 𝑏𝑛(𝑘 + 𝛽𝑛)]∆0𝑛

∞

𝑛=0

                                                            (𝑟 = 1,2,… ) 

−(𝑘 + 𝛼𝑟)∑ ∑[𝑎𝑛(𝛼𝑚 − 𝛽𝑛) + 𝑏𝑛(𝛼𝑚 + 𝛽𝑛)]
∆𝑚𝑛

2𝛼𝑚𝐿+(𝛼𝑚)𝑆𝑚

𝐽1(𝐾𝑚𝑎)

𝐽1(𝐾𝑚𝑏)

∞

𝑚=1

∞

𝑛=0

(𝑘 + 𝛼𝑚)

(𝛼𝑚 + 𝛼𝑟)
        (37) 

 

𝜋2

2
𝑁+(𝑘)∑[𝑎𝑛(𝑘 − 𝛽𝑛)𝑒

𝑖𝛽𝑛𝑙 + 𝑏𝑛(𝑘 + 𝛽𝑛)𝑒
−𝑖𝛽𝑛𝑙]∆0𝑛=

∞

𝑛=0

 

+
1

𝑁+(𝑘)𝑆0
∑[𝑎𝑛(𝑘 + 𝛽𝑛)𝑒

𝑖𝛽𝑛𝑙 + 𝑏𝑛(𝑘 − 𝛽𝑛)𝑒
−𝑖𝛽𝑛𝑙]∆0𝑛                                                                         

∞

𝑛=0

 

−𝑘∑ ∑[𝑎𝑛(𝛼𝑚 + 𝛽𝑛)𝑒
𝑖𝛽𝑛𝑙 + 𝑏𝑛(𝛼𝑚 − 𝛽𝑛)𝑒

−𝑖𝛽𝑛𝑙]
∆𝑚𝑛

𝛼𝑚𝑁+(𝛼𝑚)𝑆𝑚
−
𝜋𝑘𝑎𝑒𝑖𝑘𝑙

𝑁+(𝑘)

∞

𝑚=1

∞

𝑛=0

        (38) 

 

𝜋2

2
𝑁+(𝛼𝑟)∑[𝑎𝑛(𝛼𝑟 − 𝛽𝑛)𝑒

𝑖𝛽𝑛𝑙 + 𝑏𝑛(𝛼𝑟 + 𝛽𝑛)𝑒
−𝑖𝛽𝑛𝑙]∆𝑟𝑛=

∞

𝑛=0

 

+
1

𝑁+(𝑘)𝑆0
∑[𝑎𝑛(𝑘 + 𝛽𝑛)𝑒

𝑖𝛽𝑛𝑙 + 𝑏𝑛(𝑘 − 𝛽𝑛)𝑒
−𝑖𝛽𝑛𝑙]∆0𝑛                                                                         (𝑟 = 1,2,… )

∞

𝑛=0

 

−∑ ∑[𝑎𝑛(𝛼𝑚 + 𝛽𝑛)𝑒
𝑖𝛽𝑛𝑙 + 𝑏𝑛(𝛼𝑚 − 𝛽𝑛)𝑒

−𝑖𝛽𝑛𝑙]
(𝑘 + 𝛼𝑚)∆𝑚𝑛
2𝛼𝑚𝑁+(𝛼𝑚)𝑆𝑚

(𝑘 + 𝛼𝑟)

(𝛼𝑚 + 𝛼𝑟)
−
𝜋𝑘𝑎𝑒𝑖𝑘𝑙

𝑁+(𝑘)

∞

𝑚=1

∞

𝑛=0

        (39) 

 

where 

𝑆0 =
2

𝜋2
𝑎2 − 𝑏2

𝑎2
       ,       𝑆𝑚 =

2

𝜋2
𝐽1
2(𝐾𝑚𝑎) − 𝐽1

2(𝐾𝑚𝑏)

𝐽1
2(𝐾𝑚𝑏)

                              (40) 

  
 

∆0𝑛=
2

𝜋𝛾𝑛
{[𝐽1(𝛾𝑛𝑎) − 𝑅𝑛𝑌1(𝛾𝑛𝑎)] −

𝑏

𝑎
[𝐽1(𝛾𝑛𝑏) − 𝑅𝑛𝑌1(𝛾𝑛𝑏)]}                    (41) 

 

∆𝑚𝑛=
2

𝜋

𝛾𝑛

𝛾𝑛
2 − 𝐾𝑚

2 {[𝐽1(𝛾𝑛𝑎) − 𝑅𝑛𝑌1(𝛾𝑛𝑎)] −
𝐽1(𝐾𝑚𝑎)

𝐽1(𝐾𝑚𝑏)
[𝐽1(𝛾𝑛𝑏) − 𝑅𝑛𝑌1(𝛾𝑛𝑏)]}          (42) 
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For radiated field we need to determine the coefficients {𝑓𝑚, 𝑔𝑚}. Their relation with {𝑎𝑛, 𝑏𝑛} is 

𝑖𝛼𝑓0 + 𝑔0 =
𝑖

𝑆0
∑[𝑎𝑛(𝛼 + 𝛽𝑛) + 𝑏𝑛(𝛼 − 𝛽𝑛)]∆0𝑛

∞

𝑛=0

                                (43) 

𝑖𝛼𝑓𝑚 + 𝑔𝑚 =
𝑖

𝑆𝑚
∑[𝑎𝑛(𝛼 + 𝛽𝑛) + 𝑏𝑛(𝛼 − 𝛽𝑛)]∆𝑚𝑛

∞

𝑛=0

                              (44) 

 

2.3. Radiated Field 

 

The radiated field 𝑢1(𝜌, 𝑧) can be obtained by taking the inverse Fourier transform of 𝐹(𝜌, 𝛼). 
From (8) and (9) we can write, 

𝑢1(𝜌, 𝑧) = −
1

2𝜋
∫ �̇�−(𝑏, 𝛼)

𝐻0
(1)(𝐾𝜌)

𝐾(𝛼)𝐻1
(1)(𝐾𝑏)

𝑒−𝑖𝛼𝑧𝑑𝛼
∞

−∞

                        (45) 

 

Taking into account the asymptotic expansion of 𝐻0
(1)
(𝐾𝜌) when 𝑘𝜌 → ∞  

 

𝐻0
(1)(𝐾𝜌) ≈ √

2

𝜋𝐾𝜌
𝑒𝑖(𝐾𝜌−𝜋/4)                                                       (46) 

 

and using saddle point technique together with (14) we evaluate the integral in (45) for the 

radiated field as, 

𝑢1(𝜌, 𝑧) ≈ ℱ(𝜃)
𝑒𝑖𝑘𝑟

𝑘𝑟
                                                                (47) 

with 

ℱ(𝜃) =
𝑖

𝜋2
1

𝐿+(𝑘𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃𝐻1
(1)(𝑘𝑏𝑠𝑖𝑛𝜃)

 

× (
𝑏

𝑎

(𝑖𝑘𝑓0 − 𝑔0)

𝐿+(𝑘)
− (𝑘 + 𝑘𝑐𝑜𝑠𝜃) ∑

𝐽1(𝐾𝑚𝑎)

𝐽1(𝐾𝑚𝑏)

(𝑘 + 𝛼𝑚)

𝐿+(𝛼𝑚)

(𝑖𝛼𝑚𝑓𝑚 − 𝑔𝑚)

2𝛼𝑚(𝛼𝑚 + 𝑘𝑐𝑜𝑠𝜃)

∞

𝑚=1

)      (48) 

where (𝑟, 𝜃) are spherical coordinates defined as, 

𝑧 = 𝑟𝑐𝑜𝑠𝜃    ,     𝜌 = 𝑟𝑠𝑖𝑛𝜃                                                       (49) 
 

3. Results and Discussion 

 

In order to show the effect of the absorbent lining characterized by the surface admittances 𝜂1,2 

on the sound radiation, some numerical results showing the variation of the amplitude ℱ(𝜃) of the 

radiated field are presented. In numerical calculations the solution of the infinite system of 

algebraic equations is obtained by truncating the infinite series at some number  N, this number is 

dependent on the dimensionless duct radii ka and kb. Since the propagating mode number 

increases for greater value of kb, we have to choose truncation number N according to this 

situation. It is observed that the number N always must be greater than the propagating mode 

number in outer duct. For simplicity in numerical calculation we also limit ourselves with only 

imaginary values of surface admittances such that 𝜂1,2 = 𝑖𝑋1,2  , 𝑋 ∈ ℝ. 
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In figures (Fig. 2, 3, 4)  the far field amplitude is demonstrated in polar plot with changing angle 

θ from 0 to π to see the effect of lining on radiation phenomenon. In all far field graphs some 

amount of decrease in the radiated field in all directions is observed in comparison with the hard 

walled duct. In Fig. 4 the parameter values are chosen as in the Fig. 6 of [5] and excellent 

agreement is observed for the “rigid” plot. This agreement verifies the correctness of the present 

method.  

 
Figure 2. Polar plot of the far field amplitude function ℱ(𝜃). 

 

 
Figure 3. Polar plot of the far field amplitude function ℱ(𝜃). 
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Figure 4. Polar plot of the far field amplitude function ℱ(𝜃). 

 

 

Conclusions  

 

The radiation of sound from two semi-infinite circular cylinders having a common axis but 

different radii is investigated. Two cylinders overlap in a finite region and in this region they 

have different linings on their walls. Using the mode matching method in overlap region and 

Fourier transform elswhere the well-known Wiener-Hopf technique successfully applied to the 

problem. The problem is first reduced to two decoupled Wiener Hopf equations and then solved 

following usual factorization and decompozition procedures. The solution involves two systems 

of linear algebraic equations involving two sets of infinitely many unknown expansion 

coefficients. Numerical solution to these systems is obtained for various values of the problem 

parameters such as overlap length kl, lining admittances 𝜂1,2. In the case where the lining 

admittances are zero, the results obtained in this paper are compared with the results of [5] and 

the agreement is perfect. Furthermore, it is observed that choosing impedance values 

appropriately it is possible to attenuate radiation and so to increase transmission at the same time. 
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